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APPLICATION OF VARIATIONAL PRINCIPLES, 
TRE HAMILTON PRINCIPLE I N  PARTICULAR, 

TO THE APPROXIMATE SOLUTION OF 
HYPERBOLIC DIFFERENTIAL EQUATIONS 

ABSTRACT 

A method of approximate solution is  given in  general form 

for  combination in i t ia l -  and boundary-value problems associ- 

ated with hyperbolic differential equations. The method is  

based on a dimensional reduction analogous t o  that of the 

Hamilton principle i n  mechanics. 

The main difficulty i n  the hyperbolic, as opposed t o  the 

el l ipt ic ,  case l i e s  i n  esti.nat,ing the approximation error 

and establishing the convergence conditions. The case of 

a uniform string held a t  both ends i n  free oscillation is  

analyzed as  a numerical example, which suffices t o  demon- 

s t ra te  the m e r i t  of the method. &+ 1 
It  i s  well known what a useful role is  played i n  the solution of 

boundary problems for  e l l i p t i c  equations by their  corresponding variational 

problems. Application of the l a t t e r  has made it possible, f o r  exaqle ,  t o  

reduce the approximate solution of a boundary problem t o  finding the minimum 

of a function, as i n  the methods of Ritz and N e r ,  o r  to  reduce the dimensions 

of the problem by transforming partial  differential  equations t o  a system of 

ordinary differential equations, as in  the method developed by L. V. Kantorovich 

(see ref. 1, chapter IV,  section 3 ) .  

Numbers in  the margin indicate pagination in  the original foreign text. 



We w i l l  consider hyperbolic equations and problems i n  which they a re  

involved with i n i t i a l  and boundary conditions. 

corresponding var ia t ional  problems can be asserted. (For problems i n  mechanics 

t h a t  a r e  expressible i n  terms of hyperbolic equations, the var ia t ional  problems 

can be derived by the l e a s t  action principle i n  Hamilton-Ostrogradskiy form.) 

W e  w i l l  be concerned with the possibi l i ty  of u t i l i z ing  var ia t ional  problems t o  

reduce the  dimensions of a problem as pa r t  of i t s  approximate solution, much 

a s  this is  done i n  the m e t h o d  of Kantorovich. 

For many such problems, the 

For definiteness, w e  w i l l  investigate the following problem. L e t  it be 

required t o  f i n d  a twice continuously different iable  solution t o  the  following 

equation i n  the rectangular region G 0 5 x 5 1 , 0 L y L Y : - 1  

sat isfying the i n i t i a l  conditions 

and boundary conditions 

Here a, b, c a r e  functions of x and y, continuously different iable  i n  G, while 

F is  the p a r t i a l  derivative w i t h  respect t o  u of a function F(x, y, u) defined 
U 

i n  the region 0 5 x 5 1 , 0 5 y 5 Y, -a 5 u 5 co and suff ic ient ly  " I  
smooth therein. We assume the existence and uniqueness of a solution and w i l l  

concern ourselves only w i t h  i t s  approximate determination. 
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To formulate the var ia t ional  principle corresponding t o  the combination 

problem j u s t  stated, we start by inspecting the values of the solution u(x, y) 

on the  s i d e  y = Y of the rectangle G: 

f o l lming  second-degree functional w i t h  respect t o  the p a r t i a l  derivatives 

u(x, Y) = v(x). We introduce the 

We w i l l  a l so  examine the s e t  @ of functions u(x, y )  which a re  twice 

continuously different iable  i n  G and  assume the following fixed values a t  the 

boundary of G: 

The solution u(x, y) of the boundary problem (1)-(3) is  a member of the set . 
Inasmuch a s  the d i f f e ren t i a l  equation (1) i s  the N e r  equation f o r  the 

functional ( 4 ) ,  this solution, of a l l  the functions i n  the  set @, has the 
I property that it w i l l  yield a stationary value of the functional I(u). 

The converse may not be true. 

u f o r  which I (u)  has a stationary value. 

L e t  there ex i s t  i n  the set a function 1 

If this problem has a unique solution, 

then it coincides w i t h  the solution of the problem (1)-(3). 

of a var ia t ional  problem can have several solutions. 

But the formulation 

Among t h e m  w i l l  be found 

the  solution of the boundary problem. In v iew of the assumed uniqueness of 

solution t o  the  problem ( l ) - (3) ,  corresponding t o  d i f fe ren t  solutions of the 

var ia t ional  problem w i l l  be different functions b (x) w i t h  the  condition 1 

uy(x, 0 )  = b1(X>, and the sought-after solution of the problem (1)-(3) w i l l  

therefore be determined by the form ascribed t o  the function b1(x) on the r ight-  
hand s i d e  of equation (2"). 
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This properij- of the solution is, f o r  the boundary problem, the analog of 

the famil iar  Hamilton-Ostogradskiy principle in mechanics. It  can be used f o r  

the approximate solution of a boundary problem by dimensional reduction. 

L e t  A (x, y)  be any suff ic ient ly  smooth function sat isfying the 
0 

conditions (2)-(3) : 
tZ (4  0) = <Po (4. AI)&, 0) = 91 (4; . 

and l e t ,  in addition, A (x, y) be arbi t rary smooth l inear ly  independent 

functions in G, reverting t o  zero a t  x = 0 and x = 1: 

k 

-6 . 

Ab (0, y) = 0, Ak ( l ,  Y) = - 
2 We wri te  the l inear  combination 

n 

k=l 

containing i n  a rb i t ra ry  functions f (y) (0 c y 5 Y). k 
W e  subject the l a t t e r  t o  the i n i t i a l  conditions 

If w e  h t roduce  u in place of u i n  equation ( 4 ) ,  we obtain a functional that n 
depends on f (k = 1, 2,..., n). We choose f such that for  I(un) the system 

k k 

of Euler equations w i l l  be satisfied. It is  readily seen t h a t  these equations 

can be reduced t o  the form 

Specifically, f o r  (x) 6 (x) z 0, it is convenient t o  seek the 2 
-. 0 1 

n *+- 

solution i n  the form % ( X .  U > = y  = E Ab (XI f k  (Y). 
4 k=O 
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The equations a re  l inear  with respect t o  the first and second derivatives 

f and f 

them t o  be reduced t o  canonical form can be enunciated without diff icul ty .  

11 I 
k k 

of the unknown functions, and the conditions necessary i n  order f o r  

The functions f (x) (k = l,..., n) must be found by solving the  system (10) k 

with the i n i t i a l  conditions (9). 

s i d e  of (8) and take un(x, y) a s  the approximate solution of the combination 

problem (1)-(3). 

Once t h i s  is done, w e  can form the right-hand 

The author knows of no estimate of the difference u(x, y)-u (x, y) n 

between the exact and approximate solutions, nor of the conditions fo r  

convergence of u (x, y) --c u(x, y). 

investigation of both problems w i l l  be complicated by the f a c t  that the 

quadratic form au +2bu u +cu2 of the derivatives u and u appearing i n  the 

in tegra l  ( 4 )  a l te rna tes  sign f o r  hyperbolic equations, i n  contradistinction t o  

It is expected, of course, that the n 

2 
x X Y  Y X Y 

boundary problems associated w i t h  e l l i p t i c  equations. Consequently, it is  

probably not possible t o  expect a forthcoming solution to  e i ther  of the 

problems indicated. 

We performed a numerical experiment, which gave sat isfactory r e su l t s  and 

l e d  us t o  expect that the above-designated application of the var ia t ional  

pr inciple  should prove useful, a t  l ea s t  i n  some cases, fo r  the approximate 

solution of combination problems associated w i t h  hyperbolic equations. 

We analyzed the f r ee  osci l la t ions of a uniform s t r ing  secured a t  both 

ends x = 0 and x = n and, a t  the i n i t i a l  t i m e  t = 0, having the shape of a 

parabola symmetrical re la t ive  t o  the s t ra ight  l i n e  x = 3 n, with a un i t  

deviation a t  the midpoint of the interval [o ,  n ]  . The i n i t i a l  veloci t ies  

of every point on the s t r i n g  were assumed equal t o  zero. 
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The functional ( 4 )  for this problem has the form 

f x  

0 0  

We sought the solution in the form _--- - --.... - 

I _  

Some of the computational results are given below 

x l t  

0.5 

2.0 

3.0 

4.5 

0,s 

0,43398 
0,46956 
0,4331 9 
0,43589 
0,43328 

-0,37395 
-0,22433 
-0.16662 ' 

-0,16706 
-0,17455 , 

-0,52717 
-0.53030 
-0,52933 
-0,52540 
-0,52669 

-0,@86079 
-0, I0904 
-0.11767 . 
-0.081734 
-0,084263 

- 

1.5 

0,89665 
0,87541 
0.W378 
0,89631 - 
0.895 13 

-0,46979 
-0,41822 
-0,45828 

-0,47041 

-0,98984 
-0,98865 
-0,98845 
-0,98322 
-0 99032 

-0.2501 1 
-0,20329 
- 0.20662 
-0.23830 
-0.24364 

-0,45954 ' 

2.5 ' 

0,54873 
0,57024 
0.54 161 
0.54822 
0,54623 

-0,22321 
-0,27243 

-0,22516 
-0,22620 . 

-0.22247 

-0.64 194 
-0,64400 
-0,64308 
-0,64667 
-0,641 I I 

-0.11045 
-0,13242 
-0,14084 
-0.10903 
-0,10732 

3,0 

0,12289 
0,15102 
0,12629 
0,11821 
0,12367 

4,049261 
-0 ,072  146 
-0,033594 
-0,036944 
-0,0461 26 

-0.16404 
-0,17055 
-0,170O2 
-0, I5252 
-0 16798 

-0,024376 
-0,035069 
-0,03957 I 
-0,022829 
-0.026022 

The first line of each horizontal band gives the exact solutions, the 

subsequent lines give the approximate solutions fo r  n = 0, 1, 2, 3, respectively. 

The ratio T/P was assumed equal to unity. 
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